2,470 research outputs found

    Extended quark mean-field model for neutron stars

    Full text link
    We extend the quark mean-field (QMF) model to strangeness freedom to study the properties of hyperons (Λ,Σ,Ξ\Lambda,\Sigma,\Xi) in infinite baryon matter and neutron star properties. The baryon-scalar meson couplings in the QMF model are determined self-consistently from the quark level, where the quark confinement is taken into account in terms of a scalar-vector harmonic oscillator potential. The strength of such confinement potential for u,du,d quarks is constrained by the properties of finite nuclei, while the one for ss quark is limited by the properties of nuclei with a Λ\Lambda hyperon. These two strengths are not same, which represents the SU(3) symmetry breaking effectively in the QMF model. Also, we use an enhanced Σ\Sigma coupling with the vector meson, and both Σ\Sigma and Ξ\Xi hyperon potentials can be properly described in the model. The effects of the SU(3) symmetry breaking on the neutron star structures are then studied. We find that the SU(3) breaking shifts earlier the hyperon onset density and makes hyperons more abundant in the star, in comparisons with the results of the SU(3) symmetry case. However, it does not affect much the star's maximum mass. The maximum masses are found to be 1.62M⊙1.62 M_{\odot} with hyperons and 1.88M⊙1.88 M_{\odot} without hyperons. The present neutron star model is shown to have limitations on explaining the recently measured heavy pulsar.Comment: 7 pages, 7 figures, Phys. Rev. C (2014) accepte

    Reflection asymmetric relativistic mean field approach and its application to the octupole deformed nucleus 226^{226}Ra

    Full text link
    A Reflection ASymmetric Relativistic Mean Field (RAS-RMF) approach is developed by expanding the equations of motion for both the nucleons and the mesons on the eigenfunctions of the two-center harmonic-oscillator potential. The efficiency and reliability of the RAS-RMF approach are demonstrated in its application to the well-known octupole deformed nucleus 226^{226}Ra and the available data, including the binding energy and the deformation parameters, are well reproduced.Comment: 4 pages, 2 figures, and 2 tables, to appear in Chinese Physics Letter

    Relativistic Hartree approach with exact treatment of vacuum polarization for finite nuclei

    Full text link
    We study the relativistic Hartree approach with the exact treatment of the vacuum polarization in the Walecka sigma-omega model. The contribution from the vacuum polarization of nucleon-antinucleon field to the source term of the meson fields is evaluated by performing the energy integrals of the Dirac Green function along the imaginary axis. With the present method of the vacuum polarization in finite system, the total binding energies and charge radii of 16O and 40Ca can be reproduced. On the other hand, the level-splittings in the single-particle level, in particular the spin-orbit splittings, are not described nicely because the inclusion of vacuum effect provides a large effective mass with small meson fields. We also show that the derivative expansion of the effective action which has been used to calculate the vacuum contribution for finite nuclei gives a fairly good approximation.Comment: 15 pages, 8 figure

    Strange meson-nucleon states in the quark potential model

    Get PDF
    The quark potential model and resonating group method are used to investigate the KˉN\bar{K}N bound states and/or resonances. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the confining potential with incorporating the QCD renormalization correction and the spin-orbital suppression effect in it. It was shown in our previous work that by considering the color octet contribution, use of this model to investigate the KNKN low energy elastic scattering leads to the results which are in pretty good agreement with the experimental data. In this paper, the same model and method are employed to calculate the masses of the KˉN\bar{K}N bound systems. For this purpose, the resonating group equation is transformed into a standard Schr\"odinger equation in which a nonlocal effective KˉN\bar{K}N interaction potential is included. Solving the Schr\"odinger equation by the variational method, we are able to reproduce the masses of some currently concerned KˉN\bar{K}N states and get a view that these states possibly exist as KˉN\bar{K}N molecular states. For the KNKN system, the same calculation gives no support to the existence of the resonance Θ+(1540)\Theta ^{+}(1540) which was announced recently.Comment: 15 pages, 4 figure

    Chiral symmetry breaking and stability of strangelets

    Full text link
    We discuss the stability of strangelets by considering dynamical chiral symmetry breaking and confinement. We use a U(3)L×U(3)RU(3)_{L} \times U(3)_{R} symmetric Nambu--Jona-Lasinio model for chiral symmetry breaking supplemented by a boundary condition for confinement. It is shown that strangelets with baryon number A<2×103A < 2 \times 10^{3} can stably exist. For the observables, we obtain the masses and the charge-to-baryon number ratios of the strangelets. These quantities are compared with the observed data of the exotic particles.Comment: 10 pages, 9 figures, submitted to Physical Review

    Deeply bound pionic states and the effective pion mass in nuclear systems

    Full text link
    We show that the s-wave pion-nuclear potential which reproduces the deeply bound pionic states in Pb, recently discovered at GSI, is remarkably close to the one constructed directly from low energy theorems based on chiral symmetry. Converting this information into an effective pion mass we find mπ⋆/mπ≃1.13m_\pi^\star/m_\pi\simeq 1.13 in the center of the Pb nucleus, and mπ⋆/mπ≃1.07m_\pi^\star/m_\pi\simeq 1.07 in symmetric nuclear matter.Comment: 6 pages, TeX, 2 figures in ps , submitted to Phys. Lett.

    Spurious Shell Closures in the Relativistic Mean Field Model

    Full text link
    Following a systematic theoretical study of the ground-state properties of over 7000 nuclei from the proton drip line to the neutron drip line in the relativistic mean field model [Prog. Theor. Phys. 113 (2005) 785], which is in fair agreement with existing experimental data, we observe a few spurious shell closures, i.e. proton shell closures at Z=58 and Z=92. These spurious shell closures are found to persist in all the effective forces of the relativistic mean field model, e.g. TMA, NL3, PKDD and DD-ME2.Comment: 3 pages, to appear in Chinese Physics Letter

    eta-Nucleus interactions and in-medium properties of N*(1535) in chiral models

    Full text link
    The properties of eta-nucleus interaction and their experimental consequences are investigated with eta-nucleus optical potentials obtained by postulating the N*(1535) dominance for eta-N system. The N*(1535) properties in nuclear medium are evaluated by two kinds of chiral effective models based on distinct pictures of N*(1535). We find that these two models provide qualitatively different optical potentials of the eta meson, reflecting the in-medium properties of N*(1535) in these models. In order to compare these models in physical observables, we calculate spectra of (d,3He) reactions for the eta mesic nucleus formation with various kinds of target nuclei. We show that the (d,3He) spectra obtained in these models are significantly different and are expected to be distinguishable in experiments.Comment: 24 pages, 8 figure
    • 

    corecore